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OSCILLATORY LIQUID MOTION IN CAPILLARIES, THE GEOMETRY OF WHICH
CHANGES WEAKLY
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Abstract. In this paper, on the basis of previously performed studies, the oscillatory motions of a liquid in a narrow
channel, the width of which varies slightly, are considered. The solution of the problem was carried out on the basis of
the boundary layer model for the case of a flat arrangement, which to some extent simplified the analytical description
compared to the axisymmetric problem and at the same time did not qualitatively change the physical features of the
investigated process. Asymptotic methods with a small parameter were used to obtain solutions. Three different variants
of the task are considered, which differ from each other in the patterns of changes in the width of the channel along the
longitudinal axis. As a result of the solution, it is shown that when the width of the channel changes monotonically, the
ratio of pressure gradients also changes monotonically. When the width of the channel is the same at the ends of the
analyzed section, the ratio of pressure gradients at the ends of the channel is also equal. With a sinusoidal change in the
channel width, changes in pressure gradients also have a sinusoidal character. The main result of the work is the con-
clusion that when the width of the flat capillary changes, the phase shift of the pressure fluctuation relative to itself
changes, at the same time the flow rate fluctuation relative to the pressure also changes, but the sum of these shifts
remains a constant value. In known solutions for a constant channel diameter, the harmonic oscillations of flow and
pressure also have a phase shift relative to each other that depends on the channel diameter but does not vary along
the channel. It is also shown that with further approximations, components containing harmonics with a doubled fre-
quency and a component that does not depend on time appear in the solution, i.e. with an oscillating flow in a capillary of
non-constant width, a time-independent flow is formed in certain zones. The structure of such an internal flow, as follows
from the solution, depends on the change in the diameter of the capillary and on the specified oscillation.
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1. Introduction

The study of oscillatory motion is of great interest, both in itself and for a wide
range of applications, and in particular, for heat and mass transfer processes. The
study of the oscillatory nature of the flow in capillary systems is related to many nat-
ural and technological processes. In the mining industry, this is directly related to the
technologies for preparing mineral raw materials for further processing and the tech-
nologies for using secondary resources. In addition, researchers are currently paying a
lot of attention to the study of processes in biological systems, in particular, to the
study of capillary processes in plants and the circulatory systems of animals and humans.

In most cases, for the detailed study of non-stationary flows in porous media, the
tasks are reduced to analysis of capillary flows in individual tubes. In this case, the
topologically complex pore system is reduced to some simple connection of capillar-
ies [1]. Among various tasks related to the dynamic behavior of the system and heat
and mass exchange processes, tasks with non-stationary and, in particular, pulsating
fluid flows are of considerable interest [2], [3]. The range of applications of such
tasks is quite wide, from geotechnical [4], [5] and agrotechnical problems [6] to bio-
logical systems [7].

In [8], [9], [10] classical formulations of such tasks are given. With the develop-
ment of numerical methods and computer technology, the range of research topics
has expanded significantly, however, previously developed analytical and approxi-
mate methods have not lost their importance and can be used in modern settings for
understanding of the physical features of motion.
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As follows from the known solutions at a constant diameter, harmonic oscillations
of flow and pressure have a phase shift relative to each other that does not change
along the channel [3]. If the diameter of the capillary has any changes, then this will
affect the nature of the oscillations in different parts of the channel. Capillaries of liv-
ing systems under the influence of mechanical forces [11], and those in quasi-
stationary states, for example, in tree trunks [12], have a changing channel geometry.
Subsequently, the effect of variable channel geometry on the nature of oscillation in
narrow channels is of interest.

In this work, the oscillatory movements of liquid in capillaries with a channel
width that varies slightly along the longitudinal axis are considered. The solution of
the problem is carried out for the case of a flat arrangement, since this to a certain
extent simplifies its analytical description in comparison with an axisymmetric prob-
lem, and on the other hand, it does not qualitatively change the physical features of
the process being studied.

2. Methods
The basic equations of unsteady motion in a narrow channel with a small width
change according to the boundary layer model [8] are:

a_u+a(u2)+8(vu):_ op +ﬁ£[5_“} (1)
o ox  dy  pix pov dy
olu) o) _ 2)

ox Oy

where ¢ is time, x is the longitudinal coordinate along the axis of the channel, y is the
transverse coordinate, u and v are the longitudinal and transverse velocities, p is the
density, p is the pressure, and p is the dynamic coefficient of viscosity.

Next, we assume that the width of the channel changes slowly along the
longitudinal coordinate, 1.e. 7 = h (1 + ), where A is the characteristic width of the

channel, and & is a function of the dimensionless quantity { = Bx/a, p << 1 is a
parameter. This condition allows the use of asymptotic methods [13].

: : 0,
At a constant width of the channel, the functions u, v, and P_ 4o not depend on
X

x. With a weakly changing width, these values will depend on (, therefore, after
introducing another dimensionless value n = y/h, we can rewrite equations (1), (2) in
the following form:

h02(1+5)2%+h0(1+5)2 ﬂ(a(,(;?)—n (1(1/5) agf)jmo(ug)agy“) -
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In these equations &’ =d /d x.

The condition of the smallness of the B parameter makes it possible to construct
the asymptotic solution of equations (3), (4). For oscillatory motion, the solution of
these equations can be written in the form of expansions by powers of the small
parameter f3:

u=ug(nt)+pu(& nt)+..., ugy=UsySin(2aft)+Ucy Cos(2ft),
v=pv (¢ nt)+ ,821/2 +., vy = Vs, Sin(2aft)+ Ve, Cos(2ft)], (5)
P="Py(C,t)+ P (. t)+... , Py = Psy Sin(2aft)+ Pcy Cos(2ft).
Here f* is the oscillation frequency; values Us,, Uc,, Vs,, Vec,, Ps,, Pc, are func-
tions of n determined during the solution.

After substituting these expressions in the zero approximation, we get the follow-
ing equations:

2 2
0°Us
- 2°Ucy = —Z—Psy + e (6)
n
2 2
0°Uc
n

where y% = 27;77102 (1+6 )2 (p/u). After substitution Ucy = %Pso +Unc, and

1 o
Usy = ———Pc(y +Uns,, we get an equation in the form
24

—+;(4Unco =0, (8)

whose solution is an expression
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Uncy = Aexp An Cos An+ B exp An Sin An +

9
+C exp(— An) Cos An+ D exp(— An) Sin An ©)

and then

Unsy =—Aexp An Sin An+ B exp An Cos An+

, 10
+exp(—An) Sin An — D exp(— An)Cos An (10)

where 12 =0.5 ;(2, A, B, C, D — coefficients.
From symmetry conditions on the axis of the channel and equality of zero

longitudinal velocities on the walls, we find the following relations B+ D =0,
A-C=0 and

{[exp A+ exp(— /'L)]2 Cos® A+ lexp A — exp(— ﬂ)]z Sin”® /'L}- B =

= % {lexp A + exp(— A1)|Cos A - Pcy —[exp A —exp(— )| Sin A - Psy } ,

{[expﬂ, + exp(— ﬂy)]2 Cos® A + lexp A — exp(— ﬂ,)]z Sin? ﬂ,}- A=

= —%{[expi +exp(— A)|Cos A - Psy + [exp A — exp(— 1)|SinA- Pcy } '

Next, by determining the volume flow in the channel in the form of

1
1+06 1+6
QC() :h_([USodn:hO (2—79[)KCS'PS0 +h0 (2 )

Kcc- Pcy,  (11)

(1+06)

1 (1+95)
=h dn=h, —~2 - P —h
Osg gbco n=hy Kss - Psg = hg

Ksc-Pcy,  (12)

where
- t {exp A[Sin A+ Cos 2]+ exp(~ A)[Sin A — Cos A]ffexp A+ exp(~ 1)]Cos A -

Kes = ¢ ,

23 Dot {exp A[Sin A — Cos A]-exp(~ A)[Sin A + Cos 2]+ 2 [exp A — exp(~ 1)]Sin A

e
I 1 (lexp A[Sin A~ Cos A]-exp(= A[Sin A+ CosA])+2}-[exp A + exp(~ A)]|Cos A —
cc=——
2 Det | —{exp A[Sin A + Cos A+ exp(— A)[Sin A — Cos A]}- [exp A — exp(— 1) Sin A
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: {exp A[Sin A — Cos A~ exp(~ A)[Sin A + Cos 1]+ 2 [exp A — exp(~ 1)|Sin 2 —

Ksc = 24 Det
=21 Dut {exp A[Sin A + Cos A+ exp(~ A)[Sin A — Cos A]fexp A + exp(~ 1)]Cos A
e
I 1 (lexp A[Sin A — Cos A]— exp(— A)[Sin A + Cos A]+ 2 [exp A + exp(~ 1)] Cos A —
5§ = ——
2 Det | —{exp A[Sin A + Cos 1]+ exp(— 1)[Sin A — Cos A]|[exp A — exp(~ 1)]Sin A

Det = {[exp A+ exp(- /1)]2 Cos® A + lexp A — exp(— ﬂ,)]2 Sin® l}

we will find the relations between pressure gradients and flow rates.
The expressions for Kss, Kcc, Ksc, Kcs show that Kss = Kcc and Ksc = Kcs. Let's
rewrite relations (11), (12) in this form:

27

(Kss - Kce + Ksc - KCS)PSO = m

(Ksc - Qcy + Kec - Osy ), (13)

(Kss - Kcc + Ksc - Kes)Pc = 27 )(KSS -Qcq — Kes - Os). (14)

h0(1+5

It should be emphasized that the volume flow rates Os, and Qc, are unchanged,

1.e. are independent on the longitudinal coordinate, which is a consequence of the
equality of the transverse velocities on the axis and walls of the channel. However,
the coefficients Kss, Ksc, Kcc, Kes slowly change along the longitudinal axis. This
indicates that the pressure gradients Ps; and Pc, should also vary slightly along the
channel. An important conclusion follows from this that in capillaries with a non-
constant diameter, the pressure gradients along the channel change, i.e. if a certain
harmonic pressure oscillation law is set at one end of the capillary, then at the other
end this oscillation can be shifted in phase.

3. Results and discussion
Let's give some examples. Let's consider three options: the first —

S =aiexpl /(1+exp(): second — & =ar¢ /(1+¢2) and the third 5 = a3Sing .
We will conditionally set the total flow, which is determined by the expression

G=w/QS02+QC()2 = 1+5 \/Kss + Ksc? 17, (15)
’2nf
2 2
where /1 =+/Psy” + Pcy” .
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From condition (15), we determine the change in value along the axis of the
channel. Then, putting Pc, = 0 at some point, for example, at the point x = 0 (this is a

formal choice of the initial point on the time axis) from equations (11), (12), we de-
termine the values of Qs; and Qc, and, keeping them constant, we find from (13),

(14) values of Pc and Ps along the entire length of the channel.
The figure below, as an example, shows the Pc/IT curves along the channel axis

for the above options. In order to control the accuracy of the calculations, we choose
h, and a in such a way that we have the same width of the channel for all options at

the control points.

i o A Tae W P it
ol DA N7 S XX

| LY \ oz I\ A1\ TIA T
0.04 ; \ 2 ; k\ ] \\

008 0.2

(3]

Pc [;.H c Pe, D,/'T[ —

02 = \ . A D

° 4 \
S N E= AT

60 40 20 0 20 40 xhy 60 40 20 0 20 40 xh

A —f=1T1, ho1 =0.0001, a1 = 1; ho2 =0.00015, a2 = 1/3; hoz = 0.00015, a3 =1/3
B—f=2Tu, ho1 =0.0001, a1 =1; hoo =0.00015, a2 = 1/3; ho3 = 0.00015, a3 =1/3
C—f=1TI'u, ho1 =0.0005, a1 = 1; hoo =0.00075, a> = 1/3; hoz =0.00075, a3 = 1/3.
D—f =2Tu, ho1 =0.0005, a1 =1; hoo =0.00075, a> =1/3; hoz =0.00075, a3 =1/3.

Figure — Change in Pc//I1 curves along the channel axis

In the first series of calculations, it is accepted that o = 0.0001, a; = 1; hp =
0.00015, a, = 1/3; hos = 0.00015, a5 = 1/3, in the second series: 4y = 0.0005, a; = 1;
hox = 0.00075, a, = 1/3; hos = 0.00075, a3 = 1/3. These values give the condition of
equality of /4 at the point { = 0 for all three channel configurations (in the first ver-
sion, & = 0.00015; in the second — 2 = 0.00075). In addition, at large positive values
of {, the values # = 0.0002 (in the first series) and # = 0.001 (in the second series) are
reached for a sinusoidal change - these are the maximum points. Now, with these
values, the ratio Pcy/I1 should also be equal to what we observe in the figure in all

variants. For curves 1 in the left parts of the figure (A, B) 2 =0.0001 and ~ = 0.0005
(C, D), the minimum values of curves 3 correspond to the same values, so the Pc /11

values also coincide.
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It also follows from the figure that in the first case, when the width of the channel
changes monotonically, the ratio of pressure gradients also changes monotonically. In
the second case, we have the same width of the channel at the ends of the analyzed
section, which also affects the gradients, i.e. they are equal at the ends of the channel.
In the third variant, curve 3 also tracks the sinusoidal change in channel width. Thus,
when the diameter of the capillary changes, the pressure fluctuation curves at each
point have a displacement relative to each other. In our problem, this can be written
as:

Py = IT - Sin[2aft + (¢ )| = Psy - Sin(2aft) + Pcy - Cos(2ft),

Psy=1I-Cosa,
Pcy=11-Sina.
For flow:

Q =G-Sin2aft + a(¢)+ ()| = Osg - Sin(2aft) + Ocyy - Cos(2rft),

Osy =G-Cos(a+8), Ocy =G - Sin(a +0),

Qcy/QOsy—tga

with 7g 0= .
1+Qcy/Osy-tga

Here, a is the displacement in pressure fluctuations, which varies with the width
of the channel, 0 is the displacement in volume flow fluctuations relative to pressure
fluctuations. Now, a simple conclusion follows from this. Since when the channel
width changes, Qs and Qc, remain constant, so tg(o+0) remains constant, that is, o+

is also a constant value.

Let us now schematically show another interesting effect. If we take into account
the following approximation with respect to  including nonlinear terms, the equa-
tions (3), (4) can be written in the following form:

ou 0 (ou
ho?(1+6) ZL —ﬁ—(—1j+h 21+8PP =—

—ho(1+ 5)2£a((;l22 )— n (li/é) a(;"(;z )] —ho(1+ 5)—8(‘(;1;0)

M:—(m)[a(“o)—n &’ 5(”0)J. (17)

on oc¢  (1+0) om

: (16)
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If we substitute the found terms of zeroth-order to equations (16), (17), then in the
right-hand parts we get terms in the form of Sin*(2nft)R,(, n), Sin(27tft)Cos(2nft)R (G,
n), Cos*( 2mft)R,(C, n), which, taking into account the properties of harmonic
functions, can be transformed as 0.5(R,(C, n) + R,(C, n)), 0.5Cos(4nft)(R,(C, n) - R,(C,
n)), 0.5Sin(4nf1)R,(C, n). In the first approximation the solution must be sought in the
form of u; =U,({,n)+Us, Sin(4xft)+Uc| Cos(4xft), and it follows from this that in

the solution there are: firstly, terms containing harmonics with a doubled frequency
and, secondly, a term that depends on time, i.e., during an oscillating flow in a
capillary of variable diameter, a time-independent flow is organized, it exists in those

areas where 6’ #0. The structure of such an internal flow, as follows from the
solution, depends on the change in the diameter of the capillary and on the specified
oscillation. The appearance of such effects during wave oscillations of a liquid is
quite well known and is determined by means of wave analysis of solutions [14].

4. Conclusions

In this work, the previously discussed problem of oscillations in capillary chan-
nels is extended to the case when the width of the channel changes along the longitu-
dinal axis. An asymptotic solution is built for the cases when these changes are
smooth and insignificant compared to the length of the considered channel segment.
It is shown that a change in channel width leads to a phase shift of pressure fluctua-
tions, which depends on the local value of this parameter, while the sum of phase
shifts characterizing the curves of pressure and flow fluctuations remains constant. In
addition, the analysis of the solution with taking into account the following approxi-
mation shows that an internal flow independent of time is formed in certain zones of
a narrow channel of variable cross-section during an oscillating flow of liquid. The
structure of this flow depends on the law of change of the channel width and on the
specified oscillation parameters.
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AHoTauis. Y ujiin poboTi Ha OCHOBI BUKOHAHMX PaHiLle JOCMigKeHb PO3rNAHYTI KONMUBAMbLHI PyXv PIGWHM Y BY3bKOMY
kaHani, WupuHa akux cnabo 3miHeTbCs. PO3B'A3aHHs 3agadi NpoBeAeHO Ha OCHOBI MOAENI NPUKOPAOHHOTO Lapy Ans
BUMaAKy NOCKOI MOCTAHOBKW, L0 MEBHOK MIPOK CMPOCTUNO aHamiTUYHUA OMUC MOPIBHAHO 3 OCECUMETPUYHUM
3aBOAHHAM i BOGHOYAC SIKICHO HE 3MiHMMO (hisnyHMX 0COBNMBOCTEN SOCHiLKyBaHOMO npouecy. [1ns OTpUMaHHS pilleHb
BWUKOPUCTAHO aCUMNTOTMYHI MeToaM 3 ManuM napameTpoM. PO3rnsHyTO Tpu pisHi BapiaHTX 3aBAaHHs, Lo
BigPI3HAIOTLCA OAWH B4 OGHOrO 3aKOHOMIPHOCTSMM 3MiHW LUMPUHKM KaHamy B34OBX MO3MOBXHLOI OCi. B pesynbrari
PiLLEHHS MOKa3aHO, WO KOMKU LUMPUHA KaHamy MOHOTOHHO 3MIHIOETHCS, TaKOX MOHOTOHHO 3MIHIOETLCS i BiJHOLIEHHS
rpagieHTiB TUCKIB. KOnm Ha KiHLAX aHani3oBaHOro Bifpiska LWMPWMHA KaHary OfHaKoBa, TO BiJHOLLEHHS rpagieHTiB TUCKY
Ha KiHUSX KaHany Takox piBHi. [pu CUHYCOiganbHin 3MiHi LUMPUHW KaHamy 3MiHW rpagieHTiB TUCKY TaKkoX MarTb
CUHycoifanbHuin xapaktep. OCHOBHUM pesynbTaTtoM pob0TM € BWUCHOBOK MPO Te, WO NpW 3MiHi LWMPWUHU MIOCKOrO
Kaninapa 3MiHIETbCS (ha3oBe 3MILLEHHS KOMNMBAHHS TUCKY L0 camoro cebe, Mpu LbOMY TaKOX 3MIHIOETbCS i
3MiLLiEHHs! KONMBAHHSA BUTPATW OO TUCKY, OOHAK CyMa LyX 3MilLeHb 3amvwaeTes NOCTIMHO BENUUMHOK. Y BiSOMUX
PiLLEHHsX ANS NOCTIMHOrO fiaMeTpa KaHany rapMOHiNHI KONIMBaHHA BUTPATK Ta TUCKY TakoX MalTb (ha3oBe 3MILLEHHS
LLO10 OAMH OQHOTO, SIKe 3aneXuUTb Bif AiameTpa kaHasy, ane BOHO He 3MIHIOETLCA B3LOBX KaHany. Takox nokasaHo, Lo
Npy noganblnX HAGMMKEHHSX Y PILUEHH 3'ABNSOTLCS KOMMOHEHTU, O MICTATb rapMOHIKM 3 NOABOEHOK YacTOTOH) i
KOMMOHEHT, L0 He 3anexuTb Bif Yacy, To6T0. npu konueanbHoMy nepebiry B Kaninsapi HENOCTINHOT WWPUHW, Y NEBHUX
30Hax YTBOPKOETLCS HesanexHa Bifg vacy Teuis. CTpykTypa Takoi BHYTPILLUHLOI Teuii, K BUNIMBAE 3 PILLEHHS, 3aNeXUTb
Big 3MiHM giamMeTpa kaninspa i Big KONMBaHHA, WO 3aAaEThCA.

KntouoBi cnoBa: kaninsp, pignHa, andysisi, MacoobMiH, KOnMBaHH.
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